{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Heart rate analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial shows how to extract heart rate estimates using photoplethysmography (PPG) data and accelerometer data. The pipeline consists of a stepwise approach to determine signal quality, assessing both PPG morphology and accounting for periodic artifacts using the accelerometer. Based on the signal quality, we extract high-quality segments and estimate the heart rate for every 2 s using the smoothed pseudo Wigner-Ville Distribution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This pipeline requires accelerometer and PPG data to run. In this example we loaded data from a participant of the Personalized Parkinson Project. We load the corresponding dataframes using the [load_tsdf_dataframe](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/util.py#:~:text=load_tsdf_dataframe) function. The channel `green` represents the values obtained with PPG using green light.\n", "\n", "In this example we use the interally developed `TSDF` ([documentation](https://biomarkersparkinson.github.io/tsdf/)) to load and store data [[1](https://arxiv.org/abs/2211.11294)]. \n", "\n", "However, we are aware that there are other common data formats. For example, the following functions can be used depending on the file extension of the data:\n", "- _.csv_: `pandas.read_csv()` ([documentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html))\n", "- _.json_: `json.load()` ([documentation](https://docs.python.org/3/library/json.html#json.load))\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timegreen
00.00000649511
10.00996648214
20.01992646786
30.02988645334
40.03984644317
.........
64770644.54720553884
64771644.55716554088
64772644.56712554240
64773644.57708555134
64774644.58704557205
\n", "

64775 rows × 2 columns

\n", "
" ], "text/plain": [ " time green\n", "0 0.00000 649511\n", "1 0.00996 648214\n", "2 0.01992 646786\n", "3 0.02988 645334\n", "4 0.03984 644317\n", "... ... ...\n", "64770 644.54720 553884\n", "64771 644.55716 554088\n", "64772 644.56712 554240\n", "64773 644.57708 555134\n", "64774 644.58704 557205\n", "\n", "[64775 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timeaccelerometer_xaccelerometer_yaccelerometer_z
00.000000.5507180.574163-0.273684
10.010040.5358850.623445-0.254545
20.020080.5043060.651675-0.251675
30.030120.4885170.686603-0.265550
40.040160.4942580.725359-0.278469
...............
72942730.744680.234928-0.516268-0.802871
72943730.754720.245455-0.514354-0.806699
72944730.764760.243541-0.511005-0.807177
72945730.774800.240191-0.514354-0.808134
72946730.784840.243541-0.511005-0.808134
\n", "

72947 rows × 4 columns

\n", "
" ], "text/plain": [ " time accelerometer_x accelerometer_y accelerometer_z\n", "0 0.00000 0.550718 0.574163 -0.273684\n", "1 0.01004 0.535885 0.623445 -0.254545\n", "2 0.02008 0.504306 0.651675 -0.251675\n", "3 0.03012 0.488517 0.686603 -0.265550\n", "4 0.04016 0.494258 0.725359 -0.278469\n", "... ... ... ... ...\n", "72942 730.74468 0.234928 -0.516268 -0.802871\n", "72943 730.75472 0.245455 -0.514354 -0.806699\n", "72944 730.76476 0.243541 -0.511005 -0.807177\n", "72945 730.77480 0.240191 -0.514354 -0.808134\n", "72946 730.78484 0.243541 -0.511005 -0.808134\n", "\n", "[72947 rows x 4 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from pathlib import Path\n", "from paradigma.util import load_tsdf_dataframe\n", "\n", "path_to_data = Path('../../tests/data')\n", "path_to_prepared_data = path_to_data / '1.prepared_data'\n", "\n", "ppg_prefix = 'PPG'\n", "imu_prefix = 'IMU'\n", "\n", "df_ppg, metadata_time_ppg, _ = load_tsdf_dataframe(\n", " path_to_data=path_to_prepared_data / ppg_prefix, \n", " prefix=ppg_prefix\n", ")\n", "df_imu, metadata_time_imu, _ = load_tsdf_dataframe(\n", " path_to_data=path_to_prepared_data / imu_prefix, \n", " prefix=imu_prefix\n", ")\n", "\n", "# Drop the gyroscope columns from the IMU data\n", "cols_to_drop = df_imu.filter(regex='^gyroscope_').columns\n", "df_acc = df_imu.drop(cols_to_drop, axis=1)\n", "\n", "display(df_ppg, df_acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Preprocess data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first step after loading the data is preprocessing using the [preprocess_ppg_data](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/preprocessing.py#:~:text=preprocess_ppg_data). This begins by isolating segments containing both PPG and IMU data, discarding portions where one modality (e.g., PPG) extends beyond the other, such as when the PPG recording is longer than the accelerometer data. This functionality requires the starting times (`metadata_time_ppg.start_iso8601` and `metadata_time_imu.start_iso8601`) in iso8601 format as inputs. After this step, the preprocess_ppg_data function resamples the PPG and accelerometer data to uniformly distributed timestamps, addressing the fixed but non-uniform sampling rates of the sensors. After this, a bandpass Butterworth filter (4th-order, bandpass frequencies: 0.4--3.5 Hz) is applied to the PPG signal, while a high-pass Butterworth filter (4th-order, cut-off frequency: 0.2 Hz) is applied to the accelerometer data.\n", "\n", "Note: the printed shapes are (rows, columns) with each row corresponding to a single data point and each column representing a data column (e.g.time). The number of rows of the overlapping segments of PPG and accelerometer are not the same due to sampling differences (other sensors and possibly other sampling frequencies)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original data shapes:\n", "- PPG data: (64775, 2)\n", "- Accelerometer data: (72947, 7)\n", "Overlapping preprocessed data shapes:\n", "- PPG data: (19338, 2)\n", "- Accelerometer data: (64459, 4)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timegreen
00.000000-1434.856838
10.033333-3461.717789
20.066667-5172.913796
30.100000-6343.203160
40.133333-6875.904054
.........
19333644.433333-2403.547097
19334644.466667-7434.311944
19335644.500000-8214.847078
19336644.533333-5194.393329
19337644.56666770.147000
\n", "

19338 rows × 2 columns

\n", "
" ], "text/plain": [ " time green\n", "0 0.000000 -1434.856838\n", "1 0.033333 -3461.717789\n", "2 0.066667 -5172.913796\n", "3 0.100000 -6343.203160\n", "4 0.133333 -6875.904054\n", "... ... ...\n", "19333 644.433333 -2403.547097\n", "19334 644.466667 -7434.311944\n", "19335 644.500000 -8214.847078\n", "19336 644.533333 -5194.393329\n", "19337 644.566667 70.147000\n", "\n", "[19338 rows x 2 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timeaccelerometer_xaccelerometer_yaccelerometer_z
00.000.0530780.010040-0.273154
10.010.0383370.058802-0.256899
20.020.0068240.086559-0.256739
30.03-0.0091560.120855-0.273280
40.04-0.0037700.159316-0.289007
...............
64454644.540.1041850.101627-0.029342
64455644.550.1204030.0904130.051113
64456644.560.1012890.1286840.037951
64457644.570.0731390.1373990.030834
64458644.580.0045780.1028620.025627
\n", "

64459 rows × 4 columns

\n", "
" ], "text/plain": [ " time accelerometer_x accelerometer_y accelerometer_z\n", "0 0.00 0.053078 0.010040 -0.273154\n", "1 0.01 0.038337 0.058802 -0.256899\n", "2 0.02 0.006824 0.086559 -0.256739\n", "3 0.03 -0.009156 0.120855 -0.273280\n", "4 0.04 -0.003770 0.159316 -0.289007\n", "... ... ... ... ...\n", "64454 644.54 0.104185 0.101627 -0.029342\n", "64455 644.55 0.120403 0.090413 0.051113\n", "64456 644.56 0.101289 0.128684 0.037951\n", "64457 644.57 0.073139 0.137399 0.030834\n", "64458 644.58 0.004578 0.102862 0.025627\n", "\n", "[64459 rows x 4 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from paradigma.config import PPGConfig, IMUConfig\n", "from paradigma.preprocessing import preprocess_ppg_data\n", "\n", "ppg_config = PPGConfig()\n", "imu_config = IMUConfig()\n", "\n", "print(f\"Original data shapes:\\n- PPG data: {df_ppg.shape}\\n- Accelerometer data: {df_imu.shape}\")\n", "df_ppg_proc, df_acc_proc = preprocess_ppg_data(\n", " df_ppg=df_ppg, \n", " df_acc=df_acc, \n", " ppg_config=ppg_config, \n", " imu_config=imu_config, \n", " start_time_ppg=metadata_time_ppg.start_iso8601,\n", " start_time_imu=metadata_time_imu.start_iso8601\n", ")\n", "\n", "print(f\"Overlapping preprocessed data shapes:\\n- PPG data: {df_ppg_proc.shape}\\n- Accelerometer data: {df_acc_proc.shape}\")\n", "display(df_ppg_proc, df_acc_proc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Extract signal quality features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The preprocessed data (PPG & accelerometer) is windowed into overlapping windows of length `ppg_config.window_length_s` with a window step of `ppg_config.window_step_length_s`. From the PPG windows 10 time- and frequency domain features are extracted to assess PPG morphology and from the accelerometer windows one relative power feature is calculated to assess periodic motion artifacts.\n", "\n", "The detailed steps are encapsulated in `extract_signal_quality_features` (documentation can be found [here](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/heart_rate_pipeline.py#:~:text=extract_signal_quality_features))." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The default window length for the signal quality feature extraction is set to 6 seconds.\n", "The default step size for the signal quality feature extraction is set to 1 seconds.\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timevarmeanmediankurtosisskewnesssignal_to_noiseauto_corrf_domrel_powerspectral_entropyacc_power_ratio
00.01.697510e+073418.6963922892.8151052.5404470.2772373.2416340.2824521.1718750.1799220.5611860.014196
11.01.635033e+073350.7691582892.8151052.6479510.4201633.2023130.2765261.1718750.2019720.5478120.015343
22.01.921248e+073698.9630993310.7735562.3336870.4819743.5218820.2109840.8203120.2649220.5090150.042583
33.01.646562e+073389.3257752946.5885262.6081870.7339133.3462360.2258230.7031250.2707070.4960510.034215
44.01.603135e+073364.3663132912.2807982.2687680.4403573.3145650.3059980.8203120.2640970.4966970.056204
.......................................
634634.02.281660e+061106.006037838.3077294.0580370.6741842.0726600.1720520.7031250.2040280.5775700.060486
635635.02.224441e+061113.194933838.3077293.6841590.0679792.1180190.2364080.7031250.2210440.5603620.053120
636636.05.103141e+061627.6189181030.1133033.9130680.8523312.0400940.2358220.5859380.1576670.5147170.058853
637637.07.428728e+062093.7360071520.6400673.1887530.3057802.4574460.3220340.4687500.1505820.4584770.061269
638638.01.549534e+072974.4625552482.7039444.042171-0.6280082.2287300.0959180.4687500.1029760.4938300.105554
\n", "

639 rows × 12 columns

\n", "
" ], "text/plain": [ " time var mean median kurtosis skewness \\\n", "0 0.0 1.697510e+07 3418.696392 2892.815105 2.540447 0.277237 \n", "1 1.0 1.635033e+07 3350.769158 2892.815105 2.647951 0.420163 \n", "2 2.0 1.921248e+07 3698.963099 3310.773556 2.333687 0.481974 \n", "3 3.0 1.646562e+07 3389.325775 2946.588526 2.608187 0.733913 \n", "4 4.0 1.603135e+07 3364.366313 2912.280798 2.268768 0.440357 \n", ".. ... ... ... ... ... ... \n", "634 634.0 2.281660e+06 1106.006037 838.307729 4.058037 0.674184 \n", "635 635.0 2.224441e+06 1113.194933 838.307729 3.684159 0.067979 \n", "636 636.0 5.103141e+06 1627.618918 1030.113303 3.913068 0.852331 \n", "637 637.0 7.428728e+06 2093.736007 1520.640067 3.188753 0.305780 \n", "638 638.0 1.549534e+07 2974.462555 2482.703944 4.042171 -0.628008 \n", "\n", " signal_to_noise auto_corr f_dom rel_power spectral_entropy \\\n", "0 3.241634 0.282452 1.171875 0.179922 0.561186 \n", "1 3.202313 0.276526 1.171875 0.201972 0.547812 \n", "2 3.521882 0.210984 0.820312 0.264922 0.509015 \n", "3 3.346236 0.225823 0.703125 0.270707 0.496051 \n", "4 3.314565 0.305998 0.820312 0.264097 0.496697 \n", ".. ... ... ... ... ... \n", "634 2.072660 0.172052 0.703125 0.204028 0.577570 \n", "635 2.118019 0.236408 0.703125 0.221044 0.560362 \n", "636 2.040094 0.235822 0.585938 0.157667 0.514717 \n", "637 2.457446 0.322034 0.468750 0.150582 0.458477 \n", "638 2.228730 0.095918 0.468750 0.102976 0.493830 \n", "\n", " acc_power_ratio \n", "0 0.014196 \n", "1 0.015343 \n", "2 0.042583 \n", "3 0.034215 \n", "4 0.056204 \n", ".. ... \n", "634 0.060486 \n", "635 0.053120 \n", "636 0.058853 \n", "637 0.061269 \n", "638 0.105554 \n", "\n", "[639 rows x 12 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from paradigma.config import HeartRateConfig\n", "from paradigma.pipelines.heart_rate_pipeline import extract_signal_quality_features\n", "\n", "ppg_config = HeartRateConfig('ppg')\n", "acc_config = HeartRateConfig('imu')\n", "\n", "print(\"The default window length for the signal quality feature extraction is set to\", ppg_config.window_length_s, \"seconds.\")\n", "print(\"The default step size for the signal quality feature extraction is set to\", ppg_config.window_step_length_s, \"seconds.\")\n", "\n", "df_features = extract_signal_quality_features(\n", " df_ppg=df_ppg_proc,\n", " df_acc=df_acc_proc,\n", " ppg_config=ppg_config, \n", " acc_config=acc_config, \n", ")\n", "\n", "df_features\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Signal quality classification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A trained logistic classifier is used to predict PPG signal quality and returns the `pred_sqa_proba`, which is the posterior probability of a PPG window to look like the typical PPG morphology (higher probability indicates toward the typical PPG morphology). The relative power feature from the accelerometer is compared to a threshold for periodic artifacts and therefore `pred_sqa_acc_label` is used to return a label indicating predicted periodic motion artifacts (label 0) or no periodic motion artifacts (label 1).\n", "\n", "The classification step is implemented in `signal_quality_classification` (documentation can be found [here](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/heart_rate_pipeline.py#:~:text=signal_quality_classification))." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timepred_sqa_probapred_sqa_acc_label
00.00.0060311
11.00.0117251
22.00.0680631
33.00.0808081
44.00.0745911
............
634634.00.0013871
635635.00.0015701
636636.00.0003801
637637.00.0004061
638638.00.0000041
\n", "

639 rows × 3 columns

\n", "
" ], "text/plain": [ " time pred_sqa_proba pred_sqa_acc_label\n", "0 0.0 0.006031 1\n", "1 1.0 0.011725 1\n", "2 2.0 0.068063 1\n", "3 3.0 0.080808 1\n", "4 4.0 0.074591 1\n", ".. ... ... ...\n", "634 634.0 0.001387 1\n", "635 635.0 0.001570 1\n", "636 636.0 0.000380 1\n", "637 637.0 0.000406 1\n", "638 638.0 0.000004 1\n", "\n", "[639 rows x 3 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from importlib.resources import files\n", "from paradigma.pipelines.heart_rate_pipeline import signal_quality_classification\n", "\n", "ppg_quality_classifier_package_filename = 'ppg_quality_clf_package.pkl'\n", "full_path_to_classifier_package = files('paradigma') / 'assets' / ppg_quality_classifier_package_filename\n", "\n", "config = HeartRateConfig()\n", "\n", "df_sqa = signal_quality_classification(\n", " df=df_features, \n", " config=config, \n", " full_path_to_classifier_package=full_path_to_classifier_package\n", ")\n", "\n", "df_sqa" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4: Heart rate estimation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For heart rate estimation, we extract segments of `config.tfd_length` using [estimate_heart_rate](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/heart_rate_pipeline.py#:~:text=estimate_heart_rate). We calculate the smoothed-pseudo Wigner-Ville Distribution (SPWVD) to obtain the frequency content of the PPG signal over time. We extract for every timestamp in the SPWVD the frequency with the highest power. For every non-overlapping 2 s window we average the corresponding frequencies to obtain a heart rate per window.\n", "\n", "Note: for the test data we set the tfd_length to 10 s instead of the default of 30 s, because the small PPP test data doesn't have 30 s of consecutive high-quality PPG data." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The standard default minimal window length for the heart rate extraction is set to 30 seconds.\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timeheart_rate
056.086.404715
158.086.640472
260.086.345776
362.084.872299
464.084.872299
566.084.194499
\n", "
" ], "text/plain": [ " time heart_rate\n", "0 56.0 86.404715\n", "1 58.0 86.640472\n", "2 60.0 86.345776\n", "3 62.0 84.872299\n", "4 64.0 84.872299\n", "5 66.0 84.194499" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from paradigma.pipelines.heart_rate_pipeline import estimate_heart_rate\n", "\n", "print(\"The standard default minimal window length for the heart rate extraction is set to\", config.tfd_length, \"seconds.\")\n", "# set the minimal window length for the heart rate extraction to 10 seconds instead of default of 30 seconds.\n", "config.set_tfd_length(10) \n", "\n", "df_hr = estimate_heart_rate(\n", " df_sqa=df_sqa, \n", " df_ppg_preprocessed=df_ppg_proc, \n", " config=config\n", ")\n", "\n", "df_hr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5: Heart rate aggregation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The final step is to aggregate all 2 s heart rate estimates using [aggregate_heart_rate](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/heart_rate_pipeline.py#:~:text=aggregate_heart_rate). In the current example, the mode and 99th percentile are calculated. We hypothesize that the mode gives representation of the resting heart rate while the 99th percentile indicates the maximum heart rate. In Parkinson's disease, we expect that these two measures could reflect autonomic (dys)functioning. The `nr_hr_est` in the metadata indicates based on how many 2 s windows these aggregates are determined." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'hr_aggregates': {'99p_heart_rate': 86.62868369351669,\n", " 'mode_heart_rate': 84.8722986247544},\n", " 'metadata': {'nr_hr_est': 6}}\n" ] } ], "source": [ "import pprint\n", "from paradigma.pipelines.heart_rate_pipeline import aggregate_heart_rate\n", "\n", "hr_values = df_hr['heart_rate'].values\n", "df_hr_agg = aggregate_heart_rate(\n", " hr_values=hr_values, \n", " aggregates = ['mode', '99p']\n", ")\n", "\n", "pprint.pprint(df_hr_agg)" ] } ], "metadata": { "kernelspec": { "display_name": "paradigma-Fn6RLG4_-py3.11", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }