{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tremor analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial shows how to run the tremor pipeline on prepared IMU or gyroscope data to obtain aggregated tremor measures." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load example data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example IMU data (8 minutes) from a participant of the Personalized Parkinson Project is loaded. The data was prepared as explained in the data preparation tutorial. The prepared data contains both accelerometer and gyroscope data, but only gyroscope data is necessary for running the tremor pipeline." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timeaccelerometer_xaccelerometer_yaccelerometer_zgyroscope_xgyroscope_ygyroscope_z
00.000000.5507180.574163-0.273684-115.67073232.012195-26.097561
10.010040.5358850.623445-0.254545-110.60975734.634146-24.695122
20.020080.5043060.651675-0.251675-103.23170836.768293-22.926829
30.030120.4885170.686603-0.265550-96.28048838.719512-21.158537
40.040160.4942580.725359-0.278469-92.56097641.280488-20.304878
........................
72942730.744680.234928-0.516268-0.8028710.975610-2.2560982.256098
72943730.754720.245455-0.514354-0.8066990.304878-1.7073171.768293
72944730.764760.243541-0.511005-0.8071770.304878-1.5853661.890244
72945730.774800.240191-0.514354-0.8081340.000000-1.2804881.585366
72946730.784840.243541-0.511005-0.808134-0.060976-1.0365851.219512
\n", "

72947 rows × 7 columns

\n", "
" ], "text/plain": [ " time accelerometer_x accelerometer_y accelerometer_z \\\n", "0 0.00000 0.550718 0.574163 -0.273684 \n", "1 0.01004 0.535885 0.623445 -0.254545 \n", "2 0.02008 0.504306 0.651675 -0.251675 \n", "3 0.03012 0.488517 0.686603 -0.265550 \n", "4 0.04016 0.494258 0.725359 -0.278469 \n", "... ... ... ... ... \n", "72942 730.74468 0.234928 -0.516268 -0.802871 \n", "72943 730.75472 0.245455 -0.514354 -0.806699 \n", "72944 730.76476 0.243541 -0.511005 -0.807177 \n", "72945 730.77480 0.240191 -0.514354 -0.808134 \n", "72946 730.78484 0.243541 -0.511005 -0.808134 \n", "\n", " gyroscope_x gyroscope_y gyroscope_z \n", "0 -115.670732 32.012195 -26.097561 \n", "1 -110.609757 34.634146 -24.695122 \n", "2 -103.231708 36.768293 -22.926829 \n", "3 -96.280488 38.719512 -21.158537 \n", "4 -92.560976 41.280488 -20.304878 \n", "... ... ... ... \n", "72942 0.975610 -2.256098 2.256098 \n", "72943 0.304878 -1.707317 1.768293 \n", "72944 0.304878 -1.585366 1.890244 \n", "72945 0.000000 -1.280488 1.585366 \n", "72946 -0.060976 -1.036585 1.219512 \n", "\n", "[72947 rows x 7 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pathlib import Path\n", "from paradigma.util import load_tsdf_dataframe\n", "\n", "# Set the path to where the prepared data is saved and load the data.\n", "# Note: the test data is stored in TSDF, but you can load your data in your own way\n", "path_to_data = Path('../../tests/data')\n", "path_to_prepared_data = path_to_data / '1.prepared_data' / 'imu'\n", "\n", "df_data, metadata_time, metadata_values = load_tsdf_dataframe(path_to_prepared_data, prefix='IMU')\n", "\n", "df_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1: Preprocess data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "IMU sensors collect data at a fixed sampling frequency, but the sampling rate is not uniform, causing variation in time differences between timestamps. The [preprocess_imu_data](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/preprocessing.py#:~:text=preprocess_imu_data) function therefore resamples the timestamps to be uniformly distributed, and then interpolates IMU values at these new timestamps using the original timestamps and corresponding IMU values. By setting `sensor` to 'gyroscope', only gyroscope data is preprocessed and the accelerometer data is removed from the dataframe." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The data is resampled to 100 Hz.\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timegyroscope_xgyroscope_ygyroscope_z
00.00-115.67073232.012195-26.097561
10.01-110.63630134.624710-24.701537
20.02-103.29276636.753000-22.942002
30.03-96.34906238.692931-21.175227
40.04-92.58573541.237328-20.311531
...............
73074730.741.150220-2.5615522.440945
73075730.750.588721-1.9177651.948620
73076730.760.270257-1.6268311.813725
73077730.770.185022-1.4519421.793145
73078730.78-0.133645-1.1123321.347580
\n", "

73079 rows × 4 columns

\n", "
" ], "text/plain": [ " time gyroscope_x gyroscope_y gyroscope_z\n", "0 0.00 -115.670732 32.012195 -26.097561\n", "1 0.01 -110.636301 34.624710 -24.701537\n", "2 0.02 -103.292766 36.753000 -22.942002\n", "3 0.03 -96.349062 38.692931 -21.175227\n", "4 0.04 -92.585735 41.237328 -20.311531\n", "... ... ... ... ...\n", "73074 730.74 1.150220 -2.561552 2.440945\n", "73075 730.75 0.588721 -1.917765 1.948620\n", "73076 730.76 0.270257 -1.626831 1.813725\n", "73077 730.77 0.185022 -1.451942 1.793145\n", "73078 730.78 -0.133645 -1.112332 1.347580\n", "\n", "[73079 rows x 4 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from paradigma.config import IMUConfig\n", "from paradigma.preprocessing import preprocess_imu_data\n", "\n", "config = IMUConfig()\n", "print(f'The data is resampled to {config.sampling_frequency} Hz.')\n", "\n", "df_preprocessed_data = preprocess_imu_data(df_data, config, sensor='gyroscope', watch_side='left')\n", "\n", "df_preprocessed_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2: Extract tremor features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function [`extract_tremor_features`](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/tremor_pipeline.py#:~:text=extract_tremor_features) extracts windows from the preprocessed gyroscope data using non-overlapping windows of length `config.window_length_s`. Next, from these windows the tremor features are extracted: 12 mel-frequency cepstral coefficients (MFCCs), frequency of the peak in the power spectral density, power below tremor (0.5 - 3 Hz), and power around the tremor peak. The latter is not used for tremor detection, but to compute aggregate measures of tremor power in Step 4." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The window length is 4 seconds\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timemfcc_1mfcc_2mfcc_3mfcc_4mfcc_5mfcc_6mfcc_7mfcc_8mfcc_9mfcc_10mfcc_11mfcc_12freq_peakbelow_tremor_powertremor_power
00.011.4079931.8544400.3358660.3199600.0262090.0713810.1184710.116478-0.0298430.052588-0.0537220.0122921.0013277.6145311020.094627
14.010.0431152.0110870.4628990.468260-0.1106350.151994-0.0787990.1126650.0818370.037202-0.034632-0.0420531.251310.70384287.538668
28.08.8776662.0089450.4858600.2743700.064770-0.149113-0.1303400.0504270.0234770.0960700.0745390.0202843.50215.56733756.805816
312.010.5541892.2064570.5285990.4107780.0128540.1017870.0855190.1022810.0730390.094114-0.0445190.0730971.007808.868582566.219495
416.011.0510871.6280750.1595740.2682790.1105230.1464180.1761300.087930-0.0386430.035997-0.0179650.0202231.003945.127377174.899788
...................................................
177708.06.1804621.5586600.5208060.407299-0.1265740.1318880.040739-0.007852-0.034759-0.012127-0.0483800.0563002.504.9520110.397532
178712.08.9496861.7595380.1463140.2580970.0123880.2104050.0966750.0865210.0944050.0861090.0813920.0723701.00570.73577932.044727
179716.06.6189681.4763630.332030-0.039835-0.0859200.0725370.0698170.130373-0.0438660.003158-0.0521600.0385091.003.9907321.261435
180720.06.2749671.5921590.1466550.111758-0.087665-0.0465420.1119000.018244-0.041603-0.097095-0.0617650.0457702.503.6381881.217930
181724.06.3840211.4383390.0996440.061810-0.184136-0.016639-0.0524820.0061770.099365-0.059942-0.016524-0.0108693.001.6642001.054432
\n", "

182 rows × 16 columns

\n", "
" ], "text/plain": [ " time mfcc_1 mfcc_2 mfcc_3 mfcc_4 mfcc_5 mfcc_6 \\\n", "0 0.0 11.407993 1.854440 0.335866 0.319960 0.026209 0.071381 \n", "1 4.0 10.043115 2.011087 0.462899 0.468260 -0.110635 0.151994 \n", "2 8.0 8.877666 2.008945 0.485860 0.274370 0.064770 -0.149113 \n", "3 12.0 10.554189 2.206457 0.528599 0.410778 0.012854 0.101787 \n", "4 16.0 11.051087 1.628075 0.159574 0.268279 0.110523 0.146418 \n", ".. ... ... ... ... ... ... ... \n", "177 708.0 6.180462 1.558660 0.520806 0.407299 -0.126574 0.131888 \n", "178 712.0 8.949686 1.759538 0.146314 0.258097 0.012388 0.210405 \n", "179 716.0 6.618968 1.476363 0.332030 -0.039835 -0.085920 0.072537 \n", "180 720.0 6.274967 1.592159 0.146655 0.111758 -0.087665 -0.046542 \n", "181 724.0 6.384021 1.438339 0.099644 0.061810 -0.184136 -0.016639 \n", "\n", " mfcc_7 mfcc_8 mfcc_9 mfcc_10 mfcc_11 mfcc_12 freq_peak \\\n", "0 0.118471 0.116478 -0.029843 0.052588 -0.053722 0.012292 1.00 \n", "1 -0.078799 0.112665 0.081837 0.037202 -0.034632 -0.042053 1.25 \n", "2 -0.130340 0.050427 0.023477 0.096070 0.074539 0.020284 3.50 \n", "3 0.085519 0.102281 0.073039 0.094114 -0.044519 0.073097 1.00 \n", "4 0.176130 0.087930 -0.038643 0.035997 -0.017965 0.020223 1.00 \n", ".. ... ... ... ... ... ... ... \n", "177 0.040739 -0.007852 -0.034759 -0.012127 -0.048380 0.056300 2.50 \n", "178 0.096675 0.086521 0.094405 0.086109 0.081392 0.072370 1.00 \n", "179 0.069817 0.130373 -0.043866 0.003158 -0.052160 0.038509 1.00 \n", "180 0.111900 0.018244 -0.041603 -0.097095 -0.061765 0.045770 2.50 \n", "181 -0.052482 0.006177 0.099365 -0.059942 -0.016524 -0.010869 3.00 \n", "\n", " below_tremor_power tremor_power \n", "0 13277.614531 1020.094627 \n", "1 1310.703842 87.538668 \n", "2 215.567337 56.805816 \n", "3 7808.868582 566.219495 \n", "4 3945.127377 174.899788 \n", ".. ... ... \n", "177 4.952011 0.397532 \n", "178 570.735779 32.044727 \n", "179 3.990732 1.261435 \n", "180 3.638188 1.217930 \n", "181 1.664200 1.054432 \n", "\n", "[182 rows x 16 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from paradigma.config import TremorConfig\n", "from paradigma.pipelines.tremor_pipeline import extract_tremor_features\n", "\n", "config = TremorConfig(step='features')\n", "print(f'The window length is {config.window_length_s} seconds')\n", "\n", "df_features = extract_tremor_features(df_preprocessed_data, config)\n", "\n", "df_features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3: Detect tremor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function [`detect_tremor`](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/tremor_pipeline.py#:~:text=detect_tremor) uses a pretrained logistic regression classifier to predict the tremor probability (`pred_tremor_proba`) for each window, based on the MFCCs. Using the prespecified threshold, a tremor label of 0 (no tremor) or 1 (tremor) is assigned (`pred_tremor_logreg`). Furthermore, the detected tremor windows are checked for rest tremor in two ways. First, the frequency of the peak should be between 3-7 Hz. Second, we want to exclude windows with significant arm movements. We consider a window to have significant arm movement if `below_tremor_power` exceeds `config.movement_threshold`. The final tremor label is saved in `pred_tremor_checked`. A label for predicted arm at rest (`pred_arm_at_rest`, which is 1 when at rest and 0 when not at rest) was also saved, to control for the amount of arm movement during the observed time period when aggregating the amount of tremor time in Step 4 (if a person is moving their arm, they cannot have rest tremor)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "A threshold of 50 deg²/s² is used to determine whether the arm is at rest or in stable posture.\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timepred_tremor_probapred_tremor_logregpred_arm_at_restpred_tremor_checked
00.00.001765000
14.00.001402000
28.00.001146000
312.00.001356000
416.00.001618000
..................
177708.00.000136010
178712.00.003822000
179716.00.001298010
180720.00.001217010
181724.00.005037010
\n", "

182 rows × 5 columns

\n", "
" ], "text/plain": [ " time pred_tremor_proba pred_tremor_logreg pred_arm_at_rest \\\n", "0 0.0 0.001765 0 0 \n", "1 4.0 0.001402 0 0 \n", "2 8.0 0.001146 0 0 \n", "3 12.0 0.001356 0 0 \n", "4 16.0 0.001618 0 0 \n", ".. ... ... ... ... \n", "177 708.0 0.000136 0 1 \n", "178 712.0 0.003822 0 0 \n", "179 716.0 0.001298 0 1 \n", "180 720.0 0.001217 0 1 \n", "181 724.0 0.005037 0 1 \n", "\n", " pred_tremor_checked \n", "0 0 \n", "1 0 \n", "2 0 \n", "3 0 \n", "4 0 \n", ".. ... \n", "177 0 \n", "178 0 \n", "179 0 \n", "180 0 \n", "181 0 \n", "\n", "[182 rows x 5 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from importlib.resources import files\n", "from paradigma.pipelines.tremor_pipeline import detect_tremor\n", "\n", "print(f'A threshold of {config.movement_threshold} deg\\u00b2/s\\u00b2 is used to determine whether the arm is at rest or in stable posture.')\n", "\n", "# Load the pre-trained logistic regression classifier\n", "tremor_detection_classifier_package_filename = 'tremor_detection_clf_package.pkl'\n", "full_path_to_classifier_package = files('paradigma') / 'assets' / tremor_detection_classifier_package_filename\n", "\n", "# Use the logistic regression classifier to detect tremor and check for rest tremor\n", "df_predictions = detect_tremor(df_features, config, full_path_to_classifier_package)\n", "\n", "df_predictions[['time','pred_tremor_proba','pred_tremor_logreg','pred_arm_at_rest','pred_tremor_checked']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4: Compute aggregated tremor measures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The final step is to compute the amount of tremor time and tremor power with the function [`aggregate_tremor`](https://github.com/biomarkersParkinson/paradigma/blob/main/src/paradigma/pipelines/tremor_pipeline.py#:~:text=aggregate_tremor), which aggregates over all windows in the input dataframe. Tremor time is calculated as the number of detected tremor windows, as percentage of the number of windows while the arm is at rest or in stable posture (when `below_tremor_power` does not exceed `config.movement_threshold`). This way the tremor time is controlled for the amount of time the arm is at rest or in stable posture, when rest tremor and re-emergent tremor could occur. For tremor power the following aggregates are derived: the mode, median and 90th percentile of tremor power (specified in `config.aggregates_tremor_power`). The median and modal tremor power reflect the typical tremor severity, whereas the 90th percentile reflects the maximal tremor severity within the observed timeframe. The aggregated tremor measures and metadata are stored in a json file." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Besides the modal tremor power the following tremor power aggregates are derived: ['mode', 'median', '90p'].\n", "{'aggregated_tremor_measures': {'90p_tremor_power': 0.8001855655603451,\n", " 'median_tremor_power': 0.4242462829851676,\n", " 'modal_tremor_power': 0.42,\n", " 'perc_windows_tremor': 16.853932584269664},\n", " 'metadata': {'nr_windows_rest': 89, 'nr_windows_total': 182}}\n" ] } ], "source": [ "import pprint\n", "from paradigma.pipelines.tremor_pipeline import aggregate_tremor\n", "\n", "print(f'Besides the modal tremor power the following tremor power aggregates are derived: {config.aggregates_tremor_power}.')\n", "\n", "d_tremor_aggregates = aggregate_tremor(df_predictions, config)\n", "\n", "pprint.pprint(d_tremor_aggregates)" ] } ], "metadata": { "kernelspec": { "display_name": "paradigma-cfWEGyqZ-py3.11", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 2 }